Optimization Methods for Optimal Power Quality Monitor Placement in Power Systems: A Performance Comparison
نویسندگان
چکیده
This paper presents a performance comparison between three optimization techniques, namely, quantum-inspired binary particle swarm optimization, binary particle swarm optimization and genetic algorithm in application to optimal power quality monitor (PQM) placement method for voltage sag assessment. The optimization handles the observability constraints based on the topological monitor reach area concept and solves a multi-objective function in obtaining the optimal number and placement of PQMs in power systems. The objective function consists of two functions which are based on monitor overlapping index and sag severity index. All the optimization algorithms have been implemented and tested on the IEEE 34-node, the 69-bus and the IEEE 118-bus test systems to evaluate the effectiveness of the aforementioned techniques. The results show that QBPSO provide a better optimal solution than the standard binary particle swarm optimization and the existing genetic algorithm by 56% and 31%, respectively. The validation test illustrated that the optimal PQM placements can detect and record the voltage sag events due to any fault occurrence in the systems.
منابع مشابه
Power Quality Monitor Placement Using a Tri-level Approach
Finding minimum number of connecting lines is as important as locating power quality monitors (PQMs) for full observability of power system. Therefore, a PQM placement method should determine both optimum buses and lines, since utilities can make better decisions for monitoring of power system with this information. This paper attempted to propose a new method to locate the PQMs at various unob...
متن کاملOptimal Multi-Objective Placement of UPFC for Planning the Operation of Power Systems Using the Water Cycle Optimization Algorithm
Abstract: Unified Power Flow Controller (UPFC) is one of the FACTS devices which plays a crucial role in simultaneous regulating active and reactive power, improving system load, reducing congestion and cost of production. Therefore, determining the optimum location of such equipment in order to improve the performance of the network is significant. In this paper, WCA algorithm is used to locat...
متن کاملOptimal DG Placement for Power Loss Reduction and Improvement Voltage Profile Using Smart Methods
Distributed Generations (DGs) are utilized to supply the active and reactive power in the transmission and distribution systems. These types of power sources have many benefits such as power quality enhancement, voltage deviation reduction, power loss reduction, load shedding reduction, reliability improvement, etc. In order to reach the above benefits, the optimal placement and sizing of DG is...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملOptimal Placement and Sizing of Multiple Renewable Distributed Generation Units Considering Load Variations Via Dragonfly Optimization Algorithm
The progression towards smart grids, integrating renewable energy resources, has increased the integration of distributed generators (DGs) into power distribution networks. However, several economic and technical challenges can result from the unsuitable incorporation of DGs in existing distribution networks. Therefore, optimal placement and sizing of DGs are of paramount importance to improve ...
متن کامل